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The symmetry of stereoregular polymers enables classification of elementary polymers according to the line 
groups. Their schemes are presented and the notation, extracting the data relevant for the symmetry 
considerations of the polymer, is proposed. The advantages of the concept (efficient and precise description 
of the structure, easy prediction of properties of the polymer, reductions of numerical calculations) are 
discussed and illustrated by several examples. © 1997 Elsevier Science Ltd. 
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INTRODUCTION 

Line groups ~ describe the symmetries of systems with 
translational periodicity in one direction (e.g. stereo- 
regular polymers or quasi-one-dimensional subsystems). 
These systems consist of an infinite number of atoms, 
and application of the symmetry is unavoidable in the 
calculations. The translational symmetry which is 
commonly used 2 enables reduction of the effective 
calculation to the translational cell. Nevertheless, since 
there is no crystallographic restrictiont on the order of 
the principal axis (n = 1,2, 3,4 and 6), the high order 
screw axis can appear, and the translational cell can be 
much greater than the basic structural motive, the 
monomer. Also, other symmetries may be present, and 
this emphasizes the advantages of the full line group 
treatment. 

Rigorously, the line group symmetry refers to the 
system infinitely long in the direction of the translational 
periodicity (z-axis, by default), while in the transversal 
direction the system may be finite, or even infinite. 
Therefore, the study of the boundary effects of the real 
system is beyond the scope of the methods applying this 
symmetry. Further, the polymer should not be bent. 
However, unless the bending causes some additional 
bonding between the distant monomers, the topology of 
the polymer is not changed, and the results obtained will 
be valid, but the quantum number related to quasi-linear 
momentum in the case of a stereoregular polymer should 
be interpreted as the generalized quasi momentum 
conjugated to the (bent) axis of the polymer 5. 

The starting point of the application of symmetry in 
the various physical or chemical considerations of 
polymers is the classification of these systems according 

* To whom correspondence should be addressed 
t The crystallographic line groups, i.e. those with the order of  the main 
rotational axis restricted to 1, 2, 3, 4 and 6, are more commonly known 
as the rod groups 3'4 

to the line groups, and the description of the monomer 
within such an approach. To this end the notion of 
elementary polymers, or orbits of line groups, is 
introduced 7. The first aim of this paper is to elucidate 
this approach, by giving the schemes for all orbit types, 
together with the typical coordinates of the correspond- 
ing orbit representatives. Concise symmetry related data, 
sufficient for a number of applications, are contained in 
the proposed notation based on the introduced concept. 
The schemes simplify the use of the line group symmetry 
in polymer research, enabling easy recognition of the 
symmetry structure of the system (in this context, the 
minimal sets - i.e. the symmetry fixing sets - of orbits, 
determining the symmetry, are also supplied) and 
straightforward application of the symmetry oriented 
techniques. 

ORBITS OF LINE GROUPS 

The symmetry L of the stereoregular polymer consists 
of 8 the symmetry of the single monomer, described by 
the point group P, and the symmetry of the arrangement 
of the monomers in the three-dimensional space, given 
by the group of generalized translations, Z. (This implies 
that each line group can be factorized as the product, 
L = PZ, of the point group P and the infinite cyclic 
group Z.) While P is one of the axial point groups, Z 
can be (Figure 1) either the screw axis group, generated 
by (C~ I -~) (with the standard translational group as a . '/ q 
special case), or the ghde plane group, with the generator 
(avl 1). The translational part is given in the units of the 
translational period. 

Such a group of symmetry enables definition of the 
configuration of an infinite polymer through the 
coordinates of several representative atoms. This mini- 
mal set is found within the following steps: (1) determine 
the symmetry group, L, of the system; (2) single out an 
atom, A, and act on it by all the elements of the group L: 
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Figure 1 (a) Generalized translational groups. (b) Orbits of  the line group Lqp22, Lq02 = qrD. = gp {(7., U, (Cql ~,} for q = 8, r = 1, n = 4. 
Symmetry fixing sets: al, a2 and a 3 for Ln2, Ln22 and L(2n).22 and al, a2, a3, b,, cj for other ¢_ases_. _The translational period , ~ ~  

Type a I a2 a3 b i C l dl d2 e 1 

Existence V~ Vn n even V,, n even Vn Vn Vn 

A t o m A  (x,y,z) ( pcOSrrrq ,/osinrTr'~)q 20 (pcOS(q--~),psin(q--~,),~'q) (X.0,0) (pCOS~, psin~, 0) (0,0, z) (0,0,~) (0,0,0) 

Symmetry D~ C.+(CqUI~-)C.q C . + ( C q U I q C  n D,, Dn Dn C,~+(CqUI~)C. D. 
Stabilizer Ct {e,(CqUlq)} {e,(CqUC°lq)} DI Dt C. C. + (CqUIq)C . D. 
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the infinite subsystem, called the orbit of A, is obtained, 
with all the atoms of  the same sort; (3) choose another 
atom, B, from the rest of the system, and repeat the 
procedure: another infinite subsystem is obtained, the 
orbit of the atom B, containing no common atoms with 
the previous one; (4) continue the procedure until the 
whole polymer has been partitioned into disjunctive 
orbits. Thus, the configuration of the polymer is com- 
pletely defined by the symmetry group and the coordi- 
nates of the orbit representatives A, B, etc. The orbits can 
be thought of as the simplest, elementary, polymers. 
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¢ 

r n Figure 2 Orbits of  the line group Lqp = qrC.  = gp {C., (Cql~) }, 
for n = 4, q = 8, r = 1. Symmetry fixing set: 2al. The translational 
period is n ~ 

Type al bi 

Existence V. V. 
Atom A (x,y, z) (0, O, z) 
Symmetry Cn Cn 
S t a b i l i z e r  C 1 C n 

Note that some elements of L can leave the orbit 
representative, e.g. A, unmoved. All the transformations, 
1, with this property, 1.4 = A, form the subgroup of L, 
called the stabilizer of the atom A. It is known 6 that the 
stabilizers of the atoms from the same orbit are 
conjugated, and that the orbits with the conjugated 
stabilizers are geometrically identical. This has been 
sufficient to find the algebraical classification of all of the 
orbits of the line groups 7. 

For each of the 13 infinite families of the line groups, 
one group, defined by the order, n, of the principal 
rotational axis (conventionally directed along the z axis), 
is chosen, and the schemes of its orbits are presented 
(Figures 2-13). The orbits of the other groups from the 
same family are similar, and their geometries can be 
easily reconstructed by analogy. However, there are 
cases that for special values of n (for the groups of the 
same family), some orbits cannot be realized (as non- 
equivalent to other ones); therefore, in the table under 
the figure, it is indicated when the orbit exists. The atom 
chosen as the orbit representative is denoted on each 
scheme by the black circle, A. Its coordinates are in the 
table, presented in the most general form. The coordi- 
nates that are not fixed (i.e. x, y and/or z are found in the 
table) can take all the values except those which 
correspond to other orbits, with representatives in 
more specialized positions (e.g. z = 0, 1/2, 1/4, or the 
points on mirror planes or rotation axes). The monomer 
consists of the atoms (white circles) within a single ring 
(when the rings are equidistant), or within two closer 
rings (otherwise). Its symmetry group is isomorphic to 
the point factor P (given in the caption of the figure), but 
some of the elements can be combined with fractional 
translations. Therefore, the group of symmetry of the 
monomer is explicitly given in the third row of the table, 
while the stabilizer is in the fourth row. Some character- 
istic symmetry elements (reflection in the xz-plane, av, 
rotation by the angle 7r around the horizontal axis U, and 
so on) are indicated, too. 

The statement that the group of symmetry of the 
system is L generally means that L is the maximal 
symmetry group of the system, i.e. there is no other 
group L' > L, such that the system is invariant under its 
action. It can be easily seen from the schemes that some 
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Figure 3 Orbits of  the line group L(2n), Ln = TS2. = gp {crhCz., (El1)} for n = 4. Symmetry fixing set: 2al. The translational period is 1 

Type aj bj b2 ('l 

Existence n > 1 V n V. 

Atom A (x,y, z) (0, O, z) (0, 0, ½) 

Symmetry S2n S2n C n + ( Cx.a h l 1)C. 

Stabilizer C 1 C n C n + (C2.trh[1)C. 
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Figure 4 Orbi ts  of  the line g roup  Ln/m,  L(2n) = TC.h = gp {C.,  cr h, (El l )}  for n = 4. Symmet ry  fixing sets: 2al ,  2a2, a, + a2, 2b~, al + bt. a2 ÷ bl. 
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Figure 5 Orbi ts  of  the line g roup  L(2n)~/m = (2n)t C.h .- gp { C,,, oh,, (('2.1~)} for n = 4. Symmet ry  fixing sets: 2al ,  2bl, ai + hi. The  t ransla t ional  
period is 1 
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Figure 6 Orbits  of  the line g roup  Lnmm, Lnm = TC.,, = gp { C,,, ,r,,. (El l )  } for n = 4. Symmet ry  fixing sets: 2al ,  2bl, 2 q ,  aL + bl, al + el, at + dl. 
b t + c 1 . b t + d t. c t + d I . The  t ransla t ional  period is 1 
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Stabilizer Ci Cl~ C~,, C,., 
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Figure 7 Orbits of the line group Lncc, Lnc = TcC" = gp {C,, (a~[ 1)} 
for n = 3. Symmetry fixing set: 2al. The translational period is 1 
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Figure 8 Orbits of  the line group L(2n),,mc = (2n) lC,~ = gp {Cn, ¢r,,, 
(C2n[½)} for n = 3. Symmetry fixing sets: 2al, 2bl, al + b l ,  al + d l ,  
bl ÷ dl. The translational period is 1 

Type al bl dl 

Existence 'V' n n > 1 V n 
Atom A (x, y, z) (x, 0, z) (0, 0, z) 
Symmetry Cnv C.~ C.~ 
Stabilizer C1 CI~ C,~ 

of the orbits have a symmetry greater than L. For 
example, the symmetry of all the one-dimensional orbits 
is D~hT = Lc~/mmm. Therefore, in general several 
orbits of L should be taken together to form the 
polymer, with the symmetry being exactly L. The 
minimal sets of orbit types, determining the line group 
symmetry, are listed under the figures. These symmetry 
fixing sets are the simplest systems with the exact 
symmetry of the given group. Hence, to verify that L is 
the symmetry group of the polymer, it must be shown 
that polymer can be built up from the orbits of L only, 
and that among them there is at least one of the 
symmetry fixing sets. 

SYMMETRY NOTATION 

Due to the large number of atoms in a polymer, it is 
impossible to define its conformation by explicit listing of 
the coordinates of all the atoms. Nevertheless, symmetry 
enables us to perform this, by giving only a few necessary 
data: line group; translational period; orbit composition 
(number of orbits of each type); coordinates of the atoms 
- orbit representatives (one for each appearing orbit). By 
extracting the pure symmetry data from these parameters 
of the structure of the polymer, the symmetry notation 
for the system (consisting of k different orbit types) 
emerges in the form L[nlO1,.. . ,nkOk]; here, L is the 
symbol of the relevant line group, while ni, i = 1,. . . ,  k, 
shows how many orbits of the type Oi the system 
contains. To illustrate this notation, some examples will 
be given here, while the discussion on the advantages of 
the concept is contained in the next section. 

The symmetry formula for the trans-polyacetylene 
(Figure 14) is L21/mcm[2el]. The line group L21/mcm 
belongs to the 13th line group family L(2n)n/mcm, 
n = l, 2 , . . . ,  with the order of the principal axis of pure 
rotations being n = 1. The generators are the reflection in 
the vertical mirror plane (xz, i.e. y = 0 plane), av, the 
horizontal mirror plane (xy, i.e. z = 0 plane), ah, and 
the rotation by 7r around the z-axis followed by the 
translation for the half of the translational unit along the 
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Figure 9 Orbits of  the line group L(2n)2c, L~c = TcS2. = gp {~rhC2n , (trvl ½)} for n = 3. Symmetry fixing sets: 2al, 2a2, al + a 2, for n even and al, a2 
for n odd. The translational period is 1 

Type al a 2 b 1 b2 Cl 

Existence n > 1 n odd Vn V. Vn 

Atom A (x, y, z) (0, y, ¼) (0, 0, z) (0, 0, ¼) (0, 0, 0) 

Symmet ry  $2. C .  + (tTvtThC2] 1)C n S2 n Cn ÷ (CrvO'hCzl 1)C n S2 n 

Stabilizer Cj {e, (o'vahC21 1)} Cn Cn + (o.vO.hCEi 1)On S2 n 
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Existence Vn V. V,, 
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Symmetry D.a Cn,, + (U'I1)C.,.  D.d 
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z axis, (C2] ½). Thus, the point group factor is Dlh, while 
21 is the group of generalized translations. Tram- 
polyacetylene consists of two orbits of the type el. The 
coordinates of the representative of el are (x # 0, 0, 0) (in 
the intersection of the horizontal and vertical mirror 
planes). The first orbit is formed by the carbon atoms, 
with the representative in (0.6 A, 0, 0), and the other one 
is generated by the hydrogen at (1.6 /~, 0, 0) 9. The 
configurations of the other polyacetylene isomers can 
be represented by the formula L21/mcm[2bl] for cis- 
transoid, trans-cisoid and cis polyacetylene: the line 
group symmetry is the same as for trans-polyacetylene, 
the number of orbits is also two, but the orbit types are 
different. Namely, the orbit representatives lie in the 
plane or, (with the coordinates (x # 0,0, z # 0)). The 
structure of dimerized trans-transoid polyacetylene 
isomer is given by the symmetry formula Llm[2bl] 
ninth line group family for n = 1, two h~ type orbits. 

Similarly, for the chain conformation of the stereo- 
10 regular butadiene polymers in the crystal state (Figure 

15), the symmetry formulas are: Llc[10al] for cis-l,4 
(seventh line group family, n = 1; ten orbits with 
representatives in general positions (xi,yz, zi), i= 
1 . . . .  ,10); Ll[5al] for trans-l,4 (second line group 
family, n = 1, five orbits of the type al with coordinates 
of the representatives (xi,Yi, Zi) where x i, Yi, zi # 0); 
L21/mcm[3a23e14dl] for syndiotactie 1,2 (symmetry of 
the most of the polyacetylene isomers, with three orbits 

of the representatives at (0,y, 41), where ¼ stands for the 
quarter of the translational unit, three 'trans-poly- 
acetylene' orbits and four orbits generated by the 
atoms in the horizontal mirror plane). Finally, 
L31[10al] describes the isotactic 1,2 form (screw axis 
group, ten general orbit types). 

The backbone of the Watson-Crick B-form of DNA 11 
can be approximately considered as a stereoregular 
polymer: it contains a large number of monomers 
and can be straightened well enough, while the observed 
local deviation of the helix parameters is small. The 
symmetry notation for this double helix is L10122[18al] 
(the fifth family, for n = 1, generated by (C10] ~), i.e. 
rotation for ~ around the z axis followed by trans- 
lation for the tenth of the translational unit along the z 
axis, and U, i.e. the rotation for ~- about the horizontal x 
axes). 

DISCUSSION 

There are many properties of the polymer which can be 
directly determined only by its symmetry formula 
L[nl O l , . . . ,  nkOk]. Among them there are some thermal 
and optical characteristics, normal modes of ionic 
vibrations, vibronic properties - stability of the given 
geometrical structure, classification and topology of the 
electronic zones, selection rules for various processes of 
absorption or emission of photons. Therefore, some 
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Figure 11 O r b i t s  o f  t h e  l ine  g r o u p  L n / m m m ,  L ( 2 n ) 2 m  = TDnh : gp {Cn, (Yv, fib, (El 1)} f o r  n = 4.  Symmetry f i x ing  sets :  a l ,  a2 ,  b l ,  b2, Cl, c2, d l ,  e l ,  
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Type a I a 2 bt b2 Cl c2 dl el ]1 gl g2 ht 

Existence V. Vn n > 1 n > 1 n even n even Vn n > 1 n even V n V. Vn 
AtomA (x,y,z) (x,y, t) (x,0,z) (x,0,½) (pcos~,psin~,z) (pcos."-,psin~,½) (x,y,0) (x,0,0) (pcos~ ,ps in~ ,0 )  (0,0,z) (0,0,½) (0,0,0) 

Symmetry D,a, C~ + (ahll)C.~ D.h C.. + (ahll)C~ D,,~ C.. + (ahll)C.~ D,,h D.h Dnh D,,h C.,, + (ahll)C.~ D.h 

Stabilizer Ci {e,(ahll)} Cl~ {e,a~,(a~lt),(a~ahll)} Clv {e,a~,(ahll),(u:hll)} Clh Dih Dih fay C.~+(ahll)C.~ D,~ 

precise conclusions about the similarities and distinc- 
tions between various polymers can be made, only on the 
grounds of the symmetry notations. 

The optical activity of the system is determined by 
the line group symmetry only ql. For example, from 
the symmetry notation it follows that the polyacetylene 
isomers are completely optically inactive and cannot 
be distinguished by this characteristic. Nevertheless, 
for symmetry reasons only, the thermal properties 
(expansion and conductivity) of trans-transoid- 
polyacetylene differ from the other polyacetylene iso- 
mers 9'12. For trans, cis-transoid, trans-cisoid and cis 
isomers (with the same line group, symmetry predicts 
the same form of thermal conductivity tensor. Never- 
theless, within this set of isomers the trans-polyacetylene 
is distinguished by a specific orbit structure, causing 
specific vibrational properties. Namely, the reduced 
forms of the vibrational representation (the modes 
corresponding to translations and allowed rotations of 
the system have been already subtracted) of the 
polyacetylene isomers are: 

1. For cis-transoid, trans-cisoid and cis polyacetylene 

4(0A~- + o A+ + oA{ + ~EB) + 3(0A~- + 0Ao) 

+ 2(0Bo + 0B~ - + 0Bi -) + 0 B+ + 8~EA0 

+ 4  (:B0 + :B,  + 2:A0 + 2:A,). 
k 

2. For trans-polyacetylene 

oA~ - + oAo - + 2(0 A+ + oAT + ~EB + 0 B+) 

+ 4~rEao + 2 E(kEno + kEB1 + 2kEAo + 2kEAI ). 
k 

3. For trans-transoid-polyacetylene 

4(0A~- + 7rA~- + ,Ao) +o B~- + oBo 

+ 2(0A o + ~B~- + ,So)  + 4 E(kEB0 + 2kEA0 ). 
k 

This classification of the normal vibrations, combined 
with the selection rules (i.e. Clebsch-Gordon decom- 
positions for the irreducible representations), easily gives 
the active modes for the Jahn-Teller (or Peierls) 
instability (the trans isomer is frequently analysed in 
this context6). The differences between the trans and the 
other polyacetylene isomers with the same symmetry 
group can be predicted for the electron band structure, 
vibrational zones and the selection rules for various 
processes of absorption and emission. However, sym- 
metry notation predicts no differences between the 
cis-transoid, trans-cisoid and cis isomers, concerning 
classification of electronic zones. 

Data contained in the symmetry formula are of great 
importance in simplifying the numerical calculations in 
the various problems. Namely, since the orbits are 
invariant under the group action, the representation of 
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T y p e  a l a2 a~ h l c l c2 dl 

Existence n > 1 n > 1 n - 2, 6.10 . . . .  n > I %, V~ V, 
Atom A (x,y,z) (x,O,¼) (O,.v.J) Ix, y,0) (O,O,z) (0, 0, J) (0,0, 0) 
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the g r o u p  in the  s ta te  space  o f  the  sys tem can  be r educed  
to the  o r b i t  subspaces .  Besides,  the  r e d u c e d  r ep re sen t a -  
t ions  are  o b t a i n e d  by  the i n d u c t i o n  13 f r o m  the p o i n t  
f a c to r  P o f  the  line g r o u p .  Th is  enab le s  us to  p e r f o r m  all 
the c a l c u l a t i o n s  a t  the  level o f  the  m o n o m e r ,  wi th  finite 
d i m e n s i o n a l  ma t r i ces .  

This  recent ly  deve loped  technique  14 has been app l i ed  to 
trans-polyacetylene. The  n o r m a l  v ib ra t iona l  m o d e s  o f  the 
po lyace ty lene  (a priori, this is an  inf in i te -d imens ional  
p r o b l e m )  are  found  at  the m o n o m e r i c  level (finite- 
d imens iona l  p rob lem) .  The  s impl i f ica t ion a p p e a r e d  power -  
ful enough  to enab le  the ana ly t ica l  t r ea tmen t  o f  the 
p r o b l e m  (wi thin  four-  and  e igh t -d imens iona l  matr ices) ,  
w i thou t  a p p r o x i m a t i o n s  conce rn ing  the n u m b e r  of  the 
m o n o m e r s  inc luded  in to  the ca lcula t ions .  The  same 
p r o c e d u r e  can  be app l i ed  to the e lect ronic  system. 

N o t e  t ha t  this  c o n c e p t  has  been  a l r e a d y  i m p l e m e n t e d  
in the  p r o g r a m m e  P O L S y m ,  i n t e n d e d  for  use in p o l y m e r  
phys ics .  I t  enab le s  c a l c u l a t i o n s  on  la rge  m a c r o m o l e c u l e s ,  
p o l y m e r s ,  o r  even s u b s y s t e m s  o f  c rys t a l s  us ing  p e r s o n a l  
c o m p u t e r s ,  w i t h o u t  a p p r o x i m a t i o n s  r e g a r d i n g  the l eng th  
o f  the  sys t em (in fact ,  the  p r o p o s e d  m e t h o d  a s sumes  
inf ini te  l eng th  in one  d i rec t ion) .  S o m e  resul ts  on  the  
D N A  v i b r a t i o n a l  spec t r a  a re  ava i l ab l e  5. 
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Symmetry classification: I. Milogevi6 et  al. 
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Figure 13 Orbits of the line group L(2n)Jmcm = (2n)lD,~ = gp {C~, cry, trh, (C2~1½)} for n = 2. Symmetry fixing sets: al, a2, bl, dl, el, f l .  The 
translational period is 1 

Type al a2 bl dl el 3~ gl g2 hi 

Existence V. V. n > 1 V. n > 1 n even V. V. V n 

Atom A (x,y,z) (pcos ~ ,  psin ~ ,  ~) (x,O,z) (x,y,O) (x,O,O) (pcos ~, psin ~, O) (O,O,z) (0,0,1) (0,0,0) 
Symmetry D.h C.v + (C~ahl ½)c.v Dnh D.h Dnh D.h Dnh Cnv + ( C2nCThl ½)Cnv Dnh 
Stabilizer CI {e, (C~a.ahl ½)} Clv Clh Dlh Dlh C.~ C.v ÷ (C~ahl ½)C.~ D.h 

trans trans-transoid 

\ 

Figure 14 

cis-transoid trans-cisoid cis 

Isomers of the polyacetylene Figure 15 

cis-l,4 t r a n s - l , 4  syndiotactic 1,2 lsotactlc 1,2 

Butadiene isomers 1° 

P O L Y M E R  V o l u m e  3 8  N u m b e r  1 7  1 9 9 7  4 4 5 3  


