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Symmetry classification of stereoregular

polymers
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The symmetry of stereoregular polymers enables classification of elementary polymers according to the line
groups. Their schemes are presented and the notation, extracting the data relevant for the symmetry
considerations of the polymer, is proposed. The advantages of the concept (efficient and precise description
of the structure, easy prediction of properties of the polymer, reductions of numerical calculations) are
discussed and illustrated by several examples. © 1997 Elsevier Science Ltd.
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INTRODUCTION

Line groups' describe the symmetries of systems with
translational periodicity in one direction (e.g. stereo-
regular polymers or quasi-one-dimensional subsystems).
These systems consist of an infinite number of atoms,
and application of the symmetry is unavoidable in the
calculations. The translational symmetry which is
commonly used’ enables reduction of the effective
calculation to the translational cell. Nevertheless, since
there is no crystallographic restrictiont on the order of
the principal axis (n = 1,2,3,4 and 6), the high order
screw axis can appear, and the translational cell can be
much greater than the basic structural motive, the
monomer. Also, other symmetries may be present, and
this emphasizes the advantages of the full line group
treatment.

Rigorously, the line group symmetry refers to the
system infinitely long in the direction of the translational
periodicity (z-axis, by default), while in the transversal
direction the system may be finite, or even infinite.
Therefore, the study of the boundary effects of the real
system is beyond the scope of the methods applying this
symmetry. Further, the polymer should not be bent.
However, unless the bending causes some additional
bonding between the distant monomers, the topology of
the polymer is not changed, and the results obtained will
be valid, but the quantum number related to quasi-linear
momentum in the case of a stereoregular polymer should
be interpreted as the generalized quasi momentum
conjugated to the (bent) axis of the polymer”.

The starting point of the application of symmetry in
the various physical or chemical considerations of
polymers is the classification of these systems according

* To whom correspondence should be addressed

1 The crystallographic line groups, i.e. those with the order of the main
rotational axis restricted to 1, 2, 3, 4 and 6, are more commonly known
as the rod groups®

to the line groups, and the description of the monomer
within such an approach. To this end the notion of
elementary polymers, or orbits of line groups, is
introduced’. The first aim of this paper is to elucidate
this approach, by giving the schemes for all orbit types,
together with the typical coordinates of the correspond-
ing orbit representatives. Concise symmetry related data,
sufficient for a number of applications, are contained in
the proposed notation based on the introduced concept.
The schemes simplify the use of the line group symmetry
in polymer research, enabling easy recognition of the
symmetry structure of the system (in this context, the
minimal sets — i.e. the symmetry fixing sets — of orbits,
determining the symmetry, are also supplied) and
straightforward application of the symmetry oriented
techniques.

ORBITS OF LINE GROUPS

The symmetry L of the stereoregular polymer consists
of® the symmetry of the single monomer, described by
the point group P, and the symmetry of the arrangement
of the monomers in the three-dimensional space, given
by the group of generalized translations, Z. (This implies
that each line group can be factorized as the product,
L = PZ, of the point group P and the infinite cyclic
group Z.) While P is one of the axial point groups, Z
can be (Figure 1) either the screw axis group, generated
by (C; |”) (with the standard translational group as a
spec1al case) or the glide plane group, with the generator
(04 2) The translational part is given in the units of the
translational period.

Such a group of symmetry enables definition of the
configuration of an infinite polymer through the
coordinates of several representative atoms. This mini-
mal set is found within the following steps: (1) determine
the symmetry group, L, of the system; (2) single out an
atom, 4, and act on it by all the elements of the group L:
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Figure 1 (a) Generalized translational groups. (b) Orbits of the line group L¢,22, Lgp2 =q,D, = gp {C,, U, (Cq’|g} for g=8,r=1,n=4.
Symmetry fixing sets: a;, a, and a3 for Ln2, Ln22 and L(2n),22 and 4y, a,, a3, by, ¢ for other cases. The translational period is

Type a a as b d & e
Existence V, Y, n even v, neven v, ' Y,
Atom A (x,3,2)  (peosZ psinZ 1) (pcos(} - 1), psin (¢- b, %) (x.0,0) (peosZ, psinZ, 0)  (0,0,z)  (0,0,3) (0,0,0)
Symmetry D, C, + (G UIHC, C, +{C UL, D, D, D, C,+(C7U15C, D,
Stabilizer C, {e, (C;U|3)} {e, (C,,’UC,,|§)} D, D, C, C. +(GUIHC, D,
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the infinite subsystem, called the orbit of A, is obtained,
with all the atoms of the same sort; (3) choose another
atom, B, from the rest of the system, and repeat the
procedure: another infinite subsystem is obtained, the
orbit of the atom B, containing no common atoms with
the previous one; (4) continue the procedure until the
whole polymer has been partitioned into disjunctive
orbits. Thus, the configuration of the polymer is com-
pletely defined by the symmetry group and the coordi-
nates of the orbit representatives 4, B, etc. The orbits can
be thought of as the simplest, elementary, polymers.
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Figure 2 Orbits of the line group Lg, =q,C, =gp {C,,(C;|9)},
for n=4, g=28, r=1. Symmetry fixing set: 2a;. The translational
period is

Type a; by
Existence Y, '
Atom A x,»,2) (0,0,2)
Symmetry C, C,
Stabilizer C, C

E
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[

.
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Note that some elements of L can leave the orbit
representative, e.g. 4, unmoved. All the transformations,
[, with this property, /4 = 4, form the subgroup of L,
called the stabilizer of the atom A. It is known® that the
stabilizers of the atoms from the same orbit are
conjugated, and that the orbits with the conjugated
stabilizers are geometrically identical. This has been
sufficient to find the algebraical classification of all of the
orbits of the line groups’.

For each of the 13 infinite families of the line groups,
one group, defined by the order, n, of the principal
rotational axis (conventionally directed along the z axis),
is chosen, and the schemes of its orbits are presented
(Figures 2—13). The orbits of the other groups from the
same family are similar, and their geometries can be
easily reconstructed by analogy. However, there are
cases that for special values of » (for the groups of the
same family), some orbits cannot be realized (as non-
equivalent to other ones); therefore, in the table under
the figure, it is indicated when the orbit exists. The atom
chosen as the orbit representative is denoted on each
scheme by the black circle, 4. Its coordinates are in the
table, presented in the most general form. The coordi-
nates that are not fixed (i.e. x, y and/or z are found in the
table) can take all the values except those which
correspond to other orbits, with representatives in
more specialized positions (e.g. z=10, 1/2, 1/4, or the
points on mirror planes or rotation axes). The monomer
consists of the atoms (white circles) within a single ring
(when the rings are equidistant), or within two closer
rings (otherwise). Its symmetry group is isomorphic to
the point factor P (given in the caption of the figure), but
some of the elements can be combined with fractional
translations. Therefore, the group of symmetry of the
monomer is explicitly given in the third row of the table,
while the stabilizer is in the fourth row. Some character-
istic symmetry elements (reflection in the xz-plane, o,
rotation by the angle = around the horizontal axis U, and
so on) are indicated, too.

The statement that the group of symmetry of the
system is L generally means that L is the maximal
symmetry group of the system, i.e. there is no other
group L' > L, such that the system is invariant under its
action. It can be easily seen from the schemes that some
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Figure 3 Orbits of the line group L(2n), La = TS,, = gp {0,Ca, (E|1)} for n = 4. Symmetry fixing set: 2a,. The translational period is 1

Type ay b b, ¢
Existence n>1 v, v, v,
Atom A (x,7,2) (0,0,2) (0,0, (0,0,0)
Symmetry SZn SZn Cn + (C2nah1 I)Cn SZn
Stabilizer C,; C, C, + (Ca041)C, S,
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Figure 4 Orbits of the line group Ln/m, L(2n) = TC,;, = gp {C,,.o}. (E|1)} for n = 4. Symmetry fixing sets: 2a,, 2as, a, + a5, 261, a, + by. ay + b;.
The translational period is 1

Type a as hy IS ¢y d,
Existence n>1 n> 1 n oo v, v, v,
Atom A (X, ¥, 2) (o d) (x.v.0) (0,0,2) (0,0,1) (0,0,0)
Symmetry C, C, + (g,4]1)C, C,, C C, + (o4 1)C, Con
Stabilizer C, {e. (o4 1)} {e.ay} C, C, + (o4 NC, C
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Figure 5 Orbits of the line group L(2n),/m = (20),C,;, = gp {C,, 54.{C5,| 1)} for n = 4. Symmetry fixing sets: 2a,, 2, a; + b,. The translational
period is 1

Type ay b, g ¢y d|
Existence n> n | v, v, A
Atom A (x,5,3) (x,1.0) 0.0,2) (0,0,}) (0,0,0)
Symmetry Cn)x Cnh Cnh Cn + (Cl’ghl %)Cn Cnh
Stabilizer C, {e.ay} C, C, + (Gl HC, Con

I8
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Figure 6 Orbits of the line group Laumm, Lnm = TC,,, = gp {C,,. 5,.. (E|1)} for n = 4. Symmetry fixing sets: 2a,, 2b,, 2¢,, a| + by, a; + ¢y, a; + d;,
by + ¢y, by +dy. ¢; + d,. The translational period is |

Type a by € d
Existence v, no> | n even Y,
Atom A (x.v,2) (x,0,2) (pcos T, psin T, z) (0,0,2)
Symmetry C.. C.. Co C.
Stabilizer C, C,, C. C,,
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Figure 7 Orbits of the line group Lnec, Lnc = T,C, = gp {C,, (0, 1)}
for n = 3. Symmetry fixing set: 2a,. The translational period is 1

Type a b
Existence n>1 v,
Atom A (x,5,2) (0,0,z)
Symmetry C, C,
Stabilizer C C

P P -

Figure 8 Orbits of the line group L(2n),mc = (2n),C,, = gp {C,, 0y,
(Col D)} for n=3. Symmetry fixing sets: 2a,, 2by, a) + by, a) +dj,
b, + d;. The translational period is 1

Type 4 by &
Existence \A n>1 Y
Atom A (x,»,2) (x,0,2) (0,0,2)
Symmetry C,, C,y Co
Stabilizer C C Co

Symmetry classification: |. MiloSevic¢ et al.

of the orbits have a symmetry greater than L. For
example, the symmetry of all the one-dimensional orbits
is Dy, T = Loo/mmm. Therefore, in general several
orbits of L should be taken together to form the
polymer, with the symmetry being exactly L. The
minimal sets of orbit types, determining the line group
symmetry, are listed under the figures. These symmetry
fixing sets are the simplest systems with the exact
symmetry of the given group. Hence, to verify that L is
the symmetry group of the polymer, it must be shown
that polymer can be built up from the orbits of L only,
and that among them there is at least one of the
symmetry fixing sets.

SYMMETRY NOTATION

Due to the large number of atoms in a polymer, it is
impossible to define its conformation by explicit listing of
the coordinates of all the atoms. Nevertheless, symmetry
enables us to perform this, by giving only a few necessary
data: line group; translational period; orbit composition
(number of orbits of each type); coordinates of the atoms
— orbit representatives (one for each appearing orbit). By
extracting the pure symmetry data from these parameters
of the structure of the polymer, the symmetry notation
for the system (consisting of k different orbit types)
emerges in the form L{n;0y,...,n.0;]; here, L is the
symbol of the relevant line group, while n;, i = 1,... &,
shows how many orbits of the type O; the system
contains. To illustrate this notation, some examples will
be given here, while the discussion on the advantages of
the concept is contained in the next section.

The symmetry formula for the trans-polyacetylene
(Figure 14) is L2, /mcm|2e;]. The line group L2, /mcm
belongs to the 13th line group family L(2#),/mcm,
n=1,2,..., with the order of the principal axis of pure
rotations being n = 1. The generators are the reflection in
the vertical mirror plane (xz, i.e. y = 0 plane), o,, the
horizontal mirror plane (xy, i.e. z =0 plane), o, and
the rotation by 7 around the z-axis followed by the
translation for the half of the translational unit along the

Figure 9  Orbits of the line group L(2)2¢, Liic = TSy, = gp {0,Ca, (0,| 1)}
for n odd. The translational period is 1

by b 1
e udnf :
I[ o Y 4 T
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e z 1ea
I =44 | L x A X
i , 3
1 *
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for n = 3. Symmetry fixing sets: 24, 2a3, a; + a, for neven and a,, a,

by by &1

Type a a

Existence n>1 n odd v, v, Y,
Alom A (X,yvz) (O,y,%) (0? 07 Z) (0» 0,%) (0’ 0’0)
Symmetry SZn Cn + (0’,,(7;,C2| %)Cn SZn Cn + (athC2| %)Cn SZ"
Stabilizer C, {e, (0,0, Co1 1)} C, C, + (0,0,C2| HC, S
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Figure 10 Orbits of the line group L(2n)2m, Lam = TD,, = gp {C,.0,. U
period is 1

Type a as hy

Existence v, Y, A

Atom A (x,y,2) {pcos £ psin & §) (x.0,z2)
Symmetry Dnd Cm' + (U,1 1 )Cn Dml

Stabilizer C {e.(U'|1)}

C,.

z axis, (C,|}). Thus, the point group factor is Dy, while
2, is the group of generalized translations. Trans-
polyacetylene consists of two orbits of the type ¢;. The
coordinates of the representative of e; are (x # 0,0,0) (in
the intersection of the horizontal and vertical mirror
planes). The first orbit is formed by the carbon atoms,
with the representative in (0. 6A 0,0), and the other one
is generated by the hydrogen at (1. 6A 0,0)°. The
configurations of the other polyacetylene isomers can
be represented by the formula L2;/mem|2b;] for cis-
transoid, trans-cisoid and cis polyacetylene: the line
group symmetry is the same as for trans-polyacetylene,
the number of orbits is also two, but the orbit types are
different. Namely, the orbit representatives lie in the
plane o, (with the coordinates (x # 0,0,z # 0)). The
structure of dimerized trans-transoid polyacetylene
isomer is given by the symmetry formula L1m[2b] -
ninth line group family for n = 1, two b, type orbits.
Similarly, for the chain conformation of the stereo-
regular butadiene!® polymers in the crystal state (Figure
15), the symmetry formulas are: Llc[10a;] for cis-1,4
(seventh line group family, n=1; ten orbits with
representatives in general positions (x;,y;,z), =
,10); Ll1[Sa;] for trans-1,4 (second line group
family, n = 1, five orbits of the type a; with coordinates
of the representatives (x;,y;,z;) where x;, y;, z; #0);
L2, /mem[3ay3e,4d,] for syndiotactic 1,2 (symmetry of
the most of the polyacetylene isomers, with three orbits
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" (E|1})} for n = 4. Symmetry fixing sets: a,, @, by, ¢,. The translational

¢ d] dp_ €)

Y A Vo A
{pcos £ psin £, 0) (0,0,2) (0,0,4) (0,0,0)
Dm/ DmI Cnv + (Ul| 1 )Cm Dnd

DI Cm' Cnv + (Ul’ 1 )Cm Dnd

of the representatives at (0, y, %), where % stands for the
quarter of the translational unit, three ‘tramns-poly-
acetylene’ orbits and four orbits generated by the
atoms in the horizontal mirror plane). Finally,
L3¢[10a;] describes the isotactic 1,2 form (screw axis
group, ten general orbit types).

The backbone of the Watson—Crick B-form of DNA"
can be approximately considered as a stereoregular
polymer: it contains a large number of monomers
and can be straightened well enough, while the observed
local deviation of the helix parameters is small. The
symmetry notation for this double helix is L10,22[184;]
(the fifth family, for n = 1, generated by (Cjo| ), i.c.
rotation for I around the z axis followed by trans-
lation for the tenth of the translational unit along the z
axis, and U, i.e. the rotation for = about the horizontal x
axes).

DiSCUSSION

There are many properties of the polymer which can be
directly determined only by its symmetry formula
L{n Oy,...,n,0;]. Among them there are some thermal
and optical characteristics, normal modes of ionic
vibrations, vibronic properties — stability of the given
geometrical structure, classification and topology of the
electronic zones, selection rules for various processes of
absorption or emission of photons. Therefore, some
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Figure 11 Orbits of the line group Ln/mmm, L(2n)2m = TD,;, = gp {Cy, 0,,, 03, (E|1)} for n = 4. Symmetry fixing sets: a,, a,, by, by, ¢1, ¢3, d), €y,

/1. The translational period is 1

Type a a 5 by 4 d e N 14 £ by
Existence V, A n>1 n>1 neven neven Y n>1 n even Yy Vo Vau
Atom A (x,y,z) (x,p)) (x,0,2) (x,0,3) (pcos I, psin £, z) (pcos, psin X, Y (x,3,0) (x,0,0) (pcos?, psinZ 0) (0,0,2) (0,0,}) (0,0,0)
Symmetry D, Cry +(041)Coy Dis Cpy + (4]1)Cpy D, Coy + (05]1)Cpy Dy D, Dy Dy, Cr + (03|1)Cpy Dy
Stabilizer C, {e,(a4I1)} C, {e,a,, (a4]1), (Guoul)} €, {e,0,,(onl1), (,041)}  Cun Dy, Dy, Cp, Cpy + (04|1)Cpy Dy

precise conclusions about the similarities and distinc-
tions between various polymers can be made, only on the
grounds of the symmetry notations.

The optical activity of the s%lstem is determined by
the line group symmetry only'!. For example, from
the symmetry notation it follows that the polyacetylene
isomers are completely optically inactive and cannot
be distinguished by this characteristic. Nevertheless,
for symmetry reasons only, the thermal properties
(expansion and conductivity) of trans-transoid-
polyacetylene differ from the other polyacetylene iso-
mers™'“. For trans, cis-transoid, trans-cisoid and cis
isomers (with the same line group, symmetry predicts
the same form of thermal conductivity tensor. Never-
theless, within this set of isomers the trans-polyacetylene
is distinguished by a specific orbit structure, causing
specific vibrational properties. Namely, the reduced
forms of the vibrational representation (the modes
corresponding to translations and allowed rotations of
the system have been already subtracted) of the
polyacetylene isomers are:

1. For cis-transoid, trans-cisoid and cis polyacetylene
4(oAg + oA7 + 04T + Ep) + 3(04] + 040)

+2(oBy + 0By + 0By ) + 0Bl +8,E,,

+4 (cEs, + kEp, + 2E4, + 2%Ey).
%

2. For trans-polyacetylene

0Adg + 04 +2(0 AT + oAT + Ep + oBY)

+4,Eq +2> (kEp, + 1Ep, + 2E4, + %Ex,).
k

3. For trans-transoid-polyacetylene

4(pAg + AJ + -4o) +o By + 0By

+2(04g + B + +By) + 4 (cEs, + 2%Ey,).
X

This classification of the normal vibrations, combined
with the selection rules (i.e. Clebsch—-Gordon decom-
positions for the irreducible representations), easily gives
the active modes for the Jahn-Teller (or Peierls)
instability (the trans isomer is frequently analysed in
this context®). The differences between the trans and the
other polyacetylene isomers with the same symmetry
group can be predicted for the electron band structure,
vibrational zones and the selection rules for various
processes of absorption and emission. However, sym-
metry notation predicts no differences between the
cis-transoid, trans-cisoid and cis isomers, concerning
classification of electronic zones.

Data contained in the symmetry formula are of great
importance in simplifying the numerical calculations in
the various problems. Namely, since the orbits are
invariant under the group action, the representation of

POLYMER Volume 38 Number 17 1997 4451
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Figure 12 Orbits of the line group Ln/mcc, L(2n)2c = T,C,y, = gp {C,. 4. (5, 1)} for n = 6. Symmetry fixing sets: 2a,, 2a,, 2a3, @, + a3, a, + a3,

ay +ay, 2by, a; + by, a; + by, a3 + by. The translational period is |

Type a a, Uy

Existence n>1 n>1 n=26.10,.
Atom A (x,y,2) {(x,0,%) (0.0}
Symme"y Cnh Cn + (”r'”hl %)Cn Cn + ((71-{7}1’ %)(:n
Stabilizer C, {e.(g,04 1)} {e (a.0,C)5

the group in the state space of the system can be reduced
to the orbit subspaces. Besides, the reduced representa-
tions are obtained by the induction' from the point
factor P of the line group. This enables us to perform all
the calculations at the level of the monomer, with finite
dimensional matrices.

This recently developed technique' has been applied to
trans-polyacetylene. The normal vibrational modes of the
polyacetylene (a priori, this is an infinite-dimensional
problem) are found at the monomeric level (finite-
dimensional problem). The simplification appeared power-
ful enough to enable the analytical treatment of the
problem (within four- and eight-dimensional matrices),
without approximations concerning the number of the
monomers included into the calculations. The same
procedure can be applied to the electronic system.

Note that this concept has been already implemented
in the programme POLSym, intended for use in polymer
physics. It enables calculations on large macromolecules,
polymers, or even subsystems of crystals using personal
computers, without approximations regarding the length
of the system (in fact, the proposed method assumes
infinite length in one direction). Some results on the
DNA vibrational spectra are available’.
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D}

by

S €2 d,
n>1 v, Y, A
(x.3.0) (0.0,z) 0,0,H {0,0,0)
Cn/z Cnh Cn + (auahl %)Cn Cnh
{"* Uh} Cn Cn + (01,'Uh| %)Cn Cnh
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Figure 13  Orbits of the line group L(2n),/mem = (20); D,y = gp {Cy, 0,00, (Can|$)} for n = 2. Symmetry fixing sets: a;, a5, b1, d), €y, f;. The
translational period is 1

Type a a b d, e h £ £ h

Existence Yy A n>1 ' n>1 n even Y, Y, Yy

Atom A (x,9,2) (pcosZ, psinL,d) (x0,z (xy,0) (x,0,0) (pcosT, psinZ, 0) (0,0,z) (0,0,]) (0,0,0)

Symmetry Dnh Cnv + (C2n0h| %)Cnv Dnh Dnh Dnh Dnh Dnh Cnv + (CZnUh! %)Cm} Dnh

Stabilizer  C, {e, (Conoy04] 1)} C Ci Dy Dy, Coy Cpo + (C2a04|3)Cry Dy
trans  trans-transoid cis-transoid  trans-cisoid cis

$ix %
-y

cis-14 trans-!4 syndiotactic 1,2 isotactic 1,2

Figure 14 Isomers of the polyacetylene Figure 15 Butadienc isomers!’
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